Tag: Ecosystem

Signals and Boundaries

John Holland’s “Signals and Boundaries” has become a touchstone in the study of complex adaptive systems (CAS), offering an intuitive way to understand how local interactions give rise to emergent behavior. At its core, Holland’s framework posits that signals (=the carriers of information) and boundaries (=the limits that define and protect modules) play a pivotal role in the organisation, adaptation, and evolution of complex systems. His insights have helped shape our understanding of how simple, localised exchanges can lead to intricate global patterns.

The framework’s influence is widespread, resonating strongly within academic circles including the SFI. Scholars have incorporated Holland’s ideas into broader discussions on network theory and modularity, using them as a bridge between traditional adaptation models and more modern computational approaches. By emphasising the dual roles of communication through signals and compartmentalisation via boundaries, Holland provided researchers with a practical toolkit for analysing the dynamics of ecosystems, technological platforms, and social networks.

Holland’s Signals and Boundaries, read at the Soekarno Hatta International Airport

A significant strength of Holland’s theory lies in its capacity to illustrate how local interactions can generate emergent complexity. When agents within a system interact, they exchange signals that serve as feedback loops—adjusting behavior and influencing neighboring agents. Meanwhile, boundaries help maintain structure by isolating specific interactions from external noise, allowing subsystems to develop independently yet remain interconnected. This delicate balance between isolation and connectivity is what drives the self-organisation and adaptation observed in complex systems.

However, the notion that complexity is solely the product of local interactions has its critics. Some argue that focusing exclusively on bottom-up processes might neglect the role of global influences and top-down causation. In many systems, overarching constraints, environmental factors, and collective dynamics impose patterns and behaviors that local interactions alone cannot fully explain. This perspective contends that emergent phenomena may also be shaped by these global forces, suggesting a need for models that integrate both micro-level interactions and macro-level structures.

One contrasting perspective within the complexity paradigms is the idea of strong emergence. Proponents of strong emergence assert that certain higher-level properties of a system are fundamentally irreducible to the interactions of its constituent parts. In this view, while local interactions are essential, they cannot entirely account for phenomena that manifest at the macro scale. The emergent behaviors observed in complex systems may require explanations that go beyond the sum of local interactions, implying that there are holistic properties at play that necessitate a different conceptual approach.

There is also a growing consensus among some researchers that a dual approach—one that synthesises both local and global perspectives—is necessary for a complete understanding of complexity. Network theorists and systems dynamicists, for example, have highlighted the importance of long-range correlations and global feedback loops that complement local interactions. This integrated approach recognises that while signals and boundaries are crucial, the interplay with broader systemic forces can drive self-organisation and adaptation in ways that are not captured by local dynamics alone.

Holland’s signals and boundaries framework remains a seminal contribution to complexity science, celebrated for its clarity and applicability across diverse domains. It has provided a powerful lens for examining how decentralised, local interactions can lead to emergent behavior—a notion that has profoundly influenced our understanding of ecosystems, technological platforms, and social networks. Yet, as our grasp of complex systems deepens, it is equally important to acknowledge and incorporate contrasting views, such as the roles of strong emergence and global influences, to capture the full richness of complexity. This ongoing dialogue not only enriches the theoretical landscape but also drives innovation in how we model and manage complex systems in practice.

Cities Development as CAS

The research titled “Inter-City Firm Connections and the Scaling of Urban Economic Indicators” by Yang, Jackson, and Kempes, published in PNAS Nexus (Nov 2024), presents a fresh perspective on how cities generate economic output. While traditional urban scaling theories focus on how local, intra-city interactions drive economic productivity, this study argues that inter-city connections — especially through multinational firms — play an equally, if not more, significant role. By analysing GDP data from cities in the US, EU, and PRC, alongside the Global Network Connectivity (GNC) of multinational firms, the study reveals that cities with higher inter-city connectivity exhibit higher-than-expected GDP, even after accounting for population size. This finding challenges the conventional idea that urban scaling is driven solely by local social interactions, offering a new lens for understanding complexity in urban systems.

This study is an example of how complexity science can be applied to real-world systems like cities. Cities, as complex adaptive systems (CAS), exhibit emergent behaviours, such as superlinear scaling of GDP, where larger cities tend to be disproportionately more productive. Traditionally, this emergent property was attributed to denser local social interactions. However, the authors introduce a new dimension of complexity by demonstrating how inter-city firm connections serve as an additional mechanism for economic emergence. Using the concept of networked systems, cities are modelled as nodes connected by firms, and the GNC score quantifies the strength of these connections. The research shows that GDP is influenced not just by a city’s local population but also by its position within this global network. This insight extends the complexity science framework by highlighting the role of cross-city organisational linkages in shaping global economic output.

The study also provides methodological advances that enrich the complexity science toolkit. It uses Scale-Adjusted Metropolitan Indicators (SAMI) to compare how cities “overperform” or “underperform” in GDP relative to expectations. This allows for a nuanced view of which cities benefit most from inter-city connections. Furthermore, the use of multilevel regression models that incorporate both local (population) and global (GNC) factors reveals the nonlinear dynamics at play. Such nonlinear scaling, where population alone cannot explain GDP growth, suggests the presence of feedback loops where better-connected cities become more prosperous, and prosperous cities become better connected. These insights underscore how complexity science can offer more accurate, multi-layered models of urban growth, moving beyond simplistic population-based approaches.

The implications of this research go beyond academic curiosity. For policymakers, it suggests that urban economic development strategies should prioritise enhancing global connectivity. Cities can benefit from strengthening ties with multinational firms, facilitating cross-city collaborations, and becoming key nodes in the global urban network. This is a shift from the classic focus on improving only local conditions, such as infrastructure or intra-city mobility. For complexity science, this study exemplifies how theories of self-organisation, emergence, and adaptive networks can be operationalised in practical, high-impact research. The work highlights the potential for developing a more comprehensive urban scaling model that integrates both local and global processes. By bridging concepts from complexity science with urban development, the study opens new possibilities for future research into how global interconnections influence local outcomes, from economic growth to social inequality.

Source: Vicky Chuqiao Yang, Jacob J Jackson, Christopher P Kempes, 2024, Inter-city firm connections and the scaling of urban economic indicatorsPNAS Nexus 3:11, DOI: 10.1093/pnasnexus/pgae503

© 2025 Complexity Center

Theme by Anders NorénUp ↑